
A Closed‑Form, Accurate Formulation of
Chromatographic Peak Shapes with
Spectrum‑Modeling Applications in
Chromatogram Modeling
Author: Amy Kukleva
Version: 21 Aug 2025

Abstract

Chromatographic peaks are often treated as Gaussian under ideal, linear partitioning, yet real HPLC/GC
peaks exhibit asymmetry (tailing/fronting) and baseline drift. We present a closed‑form, computationally
efficient model that is chemically justified and easy to tune: the exponentially modified Gaussian (EMG), i.e.,
a Gaussian band convolved with a first‑order exponential delay. We define variables in analytical‑chemistry
terms but write equations for computational scientists. Each component peak is parameterized by retention
time    , Gaussian dispersion    , an exponential time constant    governing asymmetry (   tailing,
optional mirrored case for fronting), and area  proportional to injected mass. Mixture chromatograms are
a   sum   of   peaks   plus   a   baseline   model  .   We   detail   baseline   estimation/removal   (polynomial,
asymmetric  least  squares,  morphological/wavelet  options)  and  deconvolution  of  overlapping  peaks  via
constrained least‑squares on EMG parameters. The model is unified for HPLC and GC; differences are
reflected in parameter values, not functional form. Python code is provided for simulation, plotting, and
baseline correction. The result is visually realistic and quantitatively faithful for calibration and algorithm
testing.

Nomenclature (variables/parameters)

Chromatographic:
 : time (min or s).
 : void (hold‑up) time; elution time of an unretained compound.
 : retention time (peak center parameter in the model).
 : retention (capacity) factor.

 : distribution (partition) coefficient, stationary vs mobile phase.
 : stationary and mobile phase volumes in the column;  .

 : number of theoretical plates (efficiency).
 : peak area (proportional to injected moles  times detector response factor).
 : peak height (not a primary parameter in our formulation; derived from  ).

Peak‑shape:
 : Gaussian standard deviation in time (band dispersion).
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 : exponential time constant of tailing (  : tailing; mirrored construction for fronting).
 : complementary error function.

 : baseline function (e.g., constant/linear/polynomial/ALS estimate). 

Computational:
Grid  for evaluation;  observed/simulated signal;  parameter vector(s) for one or multiple peaks.

Background: retention and Gaussian band broadening

Under linear chromatography (constant  , linear adsorption isotherm) the retention factor is 
with  . The retention time is 

The ideal band exiting a high‑efficiency column is approximately Gaussian; denoting the Gaussian standard
deviation in time by  , the ideal (symmetric) peak with area  is 

 subsumes column efficiency as well as any lumped, on‑column dispersion.

A closed‑form asymmetric peak: the EMG (semi‑Gaussian long tail)

Real peaks often tail (or less commonly front). A physically justified, closed‑form model is the exponentially
modified Gaussian (EMG): a Gaussian convolved with a one‑sided exponential (first‑order delay). Using
area  as the size parameter (so integrals are invariant under asymmetry), the EMG intensity is 

Properties. (i)  . (ii) As  ,  (Gaussian limit). (iii) Increasing 
increases right‑skew (tailing).

Fronting. For fronting, either reflect time about  : 

or allow a signed  in Eq. (3) with care to maintain non‑negativity (the reflected form is numerically robust).

Alternative semi‑Gaussian (bi‑Gaussian) option. In some workflows, a piecewise Gaussian is convenient: 
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with normalization  to ensure area  . Eq. (5) is differentiable everywhere
except  ; Eq. (3) is smooth and generally preferred.

Mixtures, baseline, and total signal

A multi‑component chromatogram is a sum of peaks plus baseline: 

Choose any analytic  : constant, linear  , polynomial, spline, or an estimated baseline (see below).
Noise can be added post hoc for realism.

Baseline detection and removal

Baselines (bleed, gradients, drift) bias area estimates. Common, effective strategies:

Low‑order polynomial/spline fit to baseline windows (iteratively masking peaks).
Asymmetric least squares (ALS) baseline (Eilers–Boelens). Given samples  , seek 
minimizing 

where  is the discrete second‑difference operator (smoothness),  controls smoothness, and
weights  update asymmetrically:  if  (down‑weight peaks), else  , with 

 (typically  –0.05). Iterate weight updates to convergence. Resulting  is
subtracted to yield baseline‑corrected signal.
Morphological (top‑hat) or wavelet filtering to separate low‑frequency baseline from peaks.

ALS is robust, fast, and parameter‑light; we provide code.

Overlapping peaks and integration

For partially resolved peaks, fit a sum of EMGs to the observed segment: 
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subject to  ,  ,  (or mirrored fronting option). The fitted  give unbiased areas even
without baseline separation, provided the shape family is appropriate.

HPLC vs GC

The same functional family (Eq. 3) fits both. Technique‑specific effects appear via parameters: GC often has
smaller    (more  symmetric  peaks  on  well‑deactivated  columns)  and  temperature‑dependent    ;  HPLC
tailing may reflect secondary interactions (silanol, ion‑exchange), increasing    . Retention mapping uses
Eq. (1); for simulation convenience one may specify  directly and keep  implicit.

Implementation (Python)

Below is a compact library for simulation, plotting, ALS baseline, and optional bi‑Gaussian/fronting support.
All times use consistent units.

import numpy as np
from math import erfc
import matplotlib.pyplot as plt

# ---------------------- Peak models ----------------------

def emg(t, tR, sigma, tau, area):
"""Exponentially Modified Gaussian (EMG) with area normalization.

    t   : array-like time axis
    tR  : retention time (float)
    sigma: Gaussian std (float, >0)
    tau : tail time constant (float, >0 for tailing)
    area: total area under the peak (float, >=0)
    Returns y(t) with integral = area.
    """

t = np.asarray(t)
if tau == 0:

# Gaussian limit
return (area / (sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((t - tR)/

sigma)**2)
z = (sigma / tau - (t - tR) / sigma) / np.sqrt(2.0)
pref = (area / (2.0 * tau))
expo = np.exp(0.5 * (sigma / tau)**2 - (t - tR)/tau)
return pref * expo * np.vectorize(erfc)(z)

def emg_fronting(t, tR, sigma, tau_f, area):
"""Fronting via reflection: evaluate a tailing EMG reflected about tR."""

A ≥j 0 σ >j 0 τ ≥j 0 A j

τ σ
τ

tR K D

4



t = np.asarray(t)
return emg(2.0*tR - t, tR, sigma, tau_f, area)

def bigaussian(t, tR, sigma_left, sigma_right, area):
"""Piecewise Gaussian (semi-Gaussian) with different sigmas left/right; 

area-normalized."""
t = np.asarray(t)
left = t <= tR
right = ~left
# unnormalized halves
y = np.zeros_like(t, dtype=float)
y[left] = np.exp(-0.5 * ((t[left]-tR)/sigma_left)**2)
y[right] = np.exp(-0.5 * ((t[right]-tR)/sigma_right)**2)
# normalization constant so that integral equals area
Z = 0.5*np.sqrt(2*np.pi)*(sigma_left + sigma_right)
return area * (y / Z)

# ---------------------- Baseline (ALS) -------------------

def baseline_als(y, lam=1e5, p=0.01, niter=10):
"""Asymmetric Least Squares baseline (Eilers–Boelens).

    y: 1D numpy array
    lam: smoothness (higher = smoother)
    p: asymmetry (0<p<1); small p pushes baseline under peaks
    niter: iterations of weight update
    Returns baseline b of same shape as y.
    """

y = np.asarray(y, dtype=float)
L = len(y)
# Second difference operator D2 via sparse-like banded arrays
# We build bands for solving (W + lam * D2^T D2) b = W y
# Implemented with simple tridiagonal construction for D2^T D2
D2 = np.zeros((L,)) # placeholder not used directly
# Tridiagonal for D2^T D2 has bands: [1, -2, 1] convolved twice
main = np.zeros(L)
off1 = np.zeros(L-1)
off2 = np.zeros(L-2)
# Build D2^T D2 main and off-diagonals
# See derivation: T = D2^T D2 yields five-diagonal matrix with coefficients 

[1, -4, 6, -4, 1]
T_main = np.full(L, 6.0)
T_off1 = np.full(L-1, -4.0)
T_off2 = np.full(L-2, 1.0)
# Boundary adjustments
T_main[0] = 1.0; T_main[1] = 5.0; T_main[-2] = 5.0; T_main[-1] = 1.0
T_off1[0] = -2.0; T_off1[-1] = -2.0
# Iterative reweighting
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w = np.ones(L)
b = np.copy(y)
for _ in range(niter):

W_main = w.copy()
# Solve (W + lam*T) b = W*y  via banded solver (here naive O(L^2) for 

clarity)
# Assemble five-diagonal matrix A
A = np.zeros((L, L))
# Fill W
np.fill_diagonal(A, W_main)
# Add lam*T
np.fill_diagonal(A, A.diagonal() + lam*T_main)
for i in range(L-1):

A[i, i+1] += lam*T_off1[i]
A[i+1, i] += lam*T_off1[i]

for i in range(L-2):
A[i, i+2] += lam*T_off2[i]
A[i+2, i] += lam*T_off2[i]

b = np.linalg.solve(A, W_main * y)
# Update weights
w = p * (y > b) + (1-p) * (y <= b)

return b

# ---------------------- Simulation & plotting -----------

def simulate(t, peaks, baseline=None):
"""Simulate y(t) = sum(peaks) + baseline.

    peaks: list of dicts with keys {model, params}
           model in {"emg", "emg_front", "bigauss"}
           params: tuple matching the model signature
    baseline: callable(t) -> array or None
    """

t = np.asarray(t)
y = np.zeros_like(t, dtype=float)
for pk in peaks:

m = pk["model"].lower()
if m == "emg":

tR, sigma, tau, area = pk["params"]
y += emg(t, tR, sigma, tau, area)

elif m == "emg_front":
tR, sigma, tau_f, area = pk["params"]
y += emg_fronting(t, tR, sigma, tau_f, area)

elif m == "bigauss":
tR, sl, sr, area = pk["params"]
y += bigaussian(t, tR, sl, sr, area)

else:
raise ValueError(f"unknown model {m}")

if baseline is not None:
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y = y + baseline(t)
return y

def plot_chrom(t, y, yb=None, title=None):
plt.figure(figsize=(9, 4))
plt.plot(t, y, lw=1.5)
if yb is not None:

plt.plot(t, yb, lw=1.0)
plt.legend(["signal", "baseline"])

plt.xlabel("time")
plt.ylabel("intensity")
if title:

plt.title(title)
plt.tight_layout()
plt.show()

Example use.

# Time axis
T = np.linspace(0, 6, 2001)
# Baseline (linear drift)
B = lambda t: 0.03 * t
# Peaks (mix of Gaussian, tailing EMG, and an overlapping neighbor)
peaks = [

{"model": "emg", "params": (1.0, 0.060, 0.000, 0.80)}, # Gaussian 
(tau=0)

{"model": "emg", "params": (2.0, 0.055, 0.000, 0.90)}, # Gaussian
{"model": "emg", "params": (4.00, 0.050, 0.150, 1.20)}, # tailing
{"model": "emg", "params": (4.35, 0.050, 0.000, 0.35)}, # small 

overlap
{"model": "bigauss", "params": (5.50, 0.045, 0.060, 0.70)}, # semi-

Gaussian
]
raw = simulate(T, peaks, baseline=B)
base = B(T)
corrected = raw - base

plot_chrom(T, raw, base, title="Raw chromatogram with baseline")
plot_chrom(T, corrected, title="Baseline-corrected chromatogram")

# Estimate baseline by ALS from raw (no prior B)
estB = baseline_als(raw, lam=2e5, p=0.01, niter=8)
plot_chrom(T, raw, estB, title="ALS baseline estimate")
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Notes. (i) Areas  may be set from injected mass times response factor. (ii) For quantitative tests, integrate
corrected peaks with trapezoidal rules or fit EMG parameters by least squares for overlapping regions.

Validation notes

Gaussian limit: with  , Eq. (3) reduces to Eq. (2) (code implements this branch explicitly).
Area invariance: EMG area equals  by construction; numerical integration of emg  recovers  to
within quadrature tolerance.
Asymmetry control:  serves as a dimensionless tailing knob. Typical moderate tailing
corresponds to  –2.
Fronting: use emg_fronting  with  to mirror the tail to the leading side.

Discussion

Why EMG? It has a clear physical interpretation (dispersive Gaussian + kinetic delay), smooth closed form
(analytical integrals/derivatives), and excellent empirical fit across HPLC/GC scenarios. When peaks are
severely non‑ideal (double‑tails, adsorption heterogeneity), mixtures of EMGs or the bi‑Gaussian (Eq. 5) can
be used with minimal overhead.

HPLC vs GC differences.  Differences predominantly affect parameter ranges: GC often entails smaller  
(better   deactivation),    scales   with   temperature/flow;   HPLC   tailing   reflects   secondary   interactions   (pH,
silanol, ion exchange). The same equations apply.

Baseline strategy. ALS (Eq. 7) is a strong default; polynomial/spline fits to hand‑picked baseline windows
are effective when baseline is simple. Morphological or wavelet methods handle structured backgrounds.

Deconvolution.  Eq. (8) enables area‑faithful integration for overlapped peaks. Provide tight bounds and
good initials (from apex/time windows); fix  if necessary for stability.

Conclusion

A compact, closed‑form model based on EMG peaks (with optional mirrored and bi‑Gaussian variants)
accurately reproduces realistic HPLC/GC chromatograms, while remaining fast and tunable. It unifies HPLC
and GC under one functional form, supports baseline estimation and overlap deconvolution, and maps
cleanly to physical parameters (  ). The provided Python layer is ready to plug into simulators and
data systems for calibration, method development, and algorithm testing.
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